Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(15): 3083-3096.e6, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37379843

RESUMO

Macropinocytosis is a conserved endocytic process by which cells engulf droplets of medium into micron-sized vesicles. We use light-sheet microscopy to define an underlying set of principles by which macropinocytic cups are shaped and closed in Dictyostelium amoebae. Cups form around domains of PIP3 stretching almost to their lip and are supported by a specialized F-actin scaffold from lip to base. They are shaped by a ring of actin polymerization created by recruiting Scar/WAVE and Arp2/3 around PIP3 domains, but how cups evolve over time to close and form a vesicle is unknown. Custom 3D analysis shows that PIP3 domains expand from small origins, capturing new membrane into the cup, and crucially, that cups close when domain expansion stalls. We show that cups can close in two ways: either at the lip, by inwardly directed actin polymerization, or the base, by stretching and delamination of the membrane. This provides the basis for a conceptual mechanism whereby closure is brought about by a combination of stalled cup expansion, continued actin polymerization at the lip, and membrane tension. We test this through the use of a biophysical model, which can recapitulate both forms of cup closure and explain how 3D cup structures evolve over time to mediate engulfment.


Assuntos
Actinas , Dictyostelium , Estruturas da Membrana Celular , Citoesqueleto de Actina , Endocitose
2.
Curr Biol ; 30(15): 2912-2926.e5, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32531280

RESUMO

Engulfment of extracellular material by phagocytosis or macropinocytosis depends on the ability of cells to generate specialized cup-shaped protrusions. To effectively capture and internalize their targets, these cups are organized into a ring or ruffle of actin-driven protrusion encircling a non-protrusive interior domain. These functional domains depend on the combined activities of multiple Ras and Rho family small GTPases, but how their activities are integrated and differentially regulated over space and time is unknown. Here, we show that the amoeba Dictyostelium discoideum coordinates Ras and Rac activity using the multidomain protein RGBARG (RCC1, RhoGEF, BAR, and RasGAP-containing protein). We find RGBARG uses a tripartite mechanism of Ras, Rac, and phospholipid interactions to localize at the protruding edge and interface with the interior of both macropinocytic and phagocytic cups. There, we propose RGBARG shapes the protrusion by expanding Rac activation at the rim while suppressing expansion of the active Ras interior domain. Consequently, cells lacking RGBARG form enlarged, flat interior domains unable to generate large macropinosomes. During phagocytosis, we find that disruption of RGBARG causes a geometry-specific defect in engulfing rod-shaped bacteria and ellipsoidal beads. This demonstrates the importance of coordinating small GTPase activities during engulfment of more complex shapes and thus the full physiological range of microbes, and how this is achieved in a model professional phagocyte.


Assuntos
Bactérias , Dictyostelium/citologia , Dictyostelium/metabolismo , Dictyostelium/fisiologia , Fagocitose , Pinocitose , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Proteínas de Ciclo Celular , Dictyostelium/imunologia
3.
Am J Hum Genet ; 100(3): 523-536, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28190456

RESUMO

Phosphoinositides are small phospholipids that control diverse cellular downstream signaling events. Their spatial and temporal availability is tightly regulated by a set of specific lipid kinases and phosphatases. Congenital muscular dystrophies are hereditary disorders characterized by hypotonia and weakness from birth with variable eye and central nervous system involvement. In individuals exhibiting congenital muscular dystrophy, early-onset cataracts, and mild intellectual disability but normal cranial magnetic resonance imaging, we identified bi-allelic mutations in INPP5K, encoding inositol polyphosphate-5-phosphatase K. Mutations impaired phosphatase activity toward the phosphoinositide phosphatidylinositol (4,5)-bisphosphate or altered the subcellular localization of INPP5K. Downregulation of INPP5K orthologs in zebrafish embryos disrupted muscle fiber morphology and resulted in abnormal eye development. These data link congenital muscular dystrophies to defective phosphoinositide 5-phosphatase activity that is becoming increasingly recognized for its role in mediating pivotal cellular mechanisms contributing to disease.


Assuntos
Catarata/genética , Disfunção Cognitiva/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Anormalidades Musculoesqueléticas/genética , Monoéster Fosfórico Hidrolases/genética , Adolescente , Adulto , Alelos , Animais , Encéfalo/patologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Deficiência Intelectual/genética , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/patologia , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra/embriologia , Peixe-Zebra/genética
4.
Am J Hum Genet ; 100(3): 537-545, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28190459

RESUMO

Congenital muscular dystrophies display a wide phenotypic and genetic heterogeneity. The combination of clinical, biochemical, and molecular genetic findings must be considered to obtain the precise diagnosis and provide appropriate genetic counselling. Here we report five individuals from four families presenting with variable clinical features including muscular dystrophy with a reduction in dystroglycan glycosylation, short stature, intellectual disability, and cataracts, overlapping both the dystroglycanopathies and Marinesco-Sjögren syndrome. Whole-exome sequencing revealed homozygous missense and compound heterozygous mutations in INPP5K in the affected members of each family. INPP5K encodes the inositol polyphosphate-5-phosphatase K, also known as SKIP (skeletal muscle and kidney enriched inositol phosphatase), which is highly expressed in the brain and muscle. INPP5K localizes to both the endoplasmic reticulum and to actin ruffles in the cytoplasm. It has been shown to regulate myoblast differentiation and has also been implicated in protein processing through its interaction with the ER chaperone HSPA5/BiP. We show that morpholino-mediated inpp5k loss of function in the zebrafish results in shortened body axis, microphthalmia with disorganized lens, microcephaly, reduced touch-evoked motility, and highly disorganized myofibers. Altogether these data demonstrate that mutations in INPP5K cause a congenital muscular dystrophy syndrome with short stature, cataracts, and intellectual disability.


Assuntos
Distrofia Muscular do Cíngulo dos Membros/genética , Monoéster Fosfórico Hidrolases/genética , Degenerações Espinocerebelares/genética , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Criança , Modelos Animais de Doenças , Distroglicanas/metabolismo , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Feminino , Estudo de Associação Genômica Ampla , Glicosilação , Transtornos do Crescimento/genética , Humanos , Deficiência Intelectual/genética , Masculino , Microcefalia/genética , Músculo Esquelético/metabolismo , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...